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Abstract

A theorem of Orlov from 2004 states that the homotopy category of matrix factor-
izations on an affine hypersurface Y is equivalent to a quotient of the bounded derived
category of coherent sheaves on Y called the singularity category. This result was sub-
sequently generalized to complete intersections of higher codimension by Burke and
Walker. In 2013, Eisenbud and Peeva introduced the notion of matrix factorizations in
arbitrary codimension. As a first step towards reconciling these two approaches, this
note describes how to construct a functor from codimension two matrix factorizations
to the singularity category of the corresponding complete intersection.

1 Introduction

Matrix factorizations were invented by Eisenbud in [Eis80] as a means of compactly de-

scribing the minimal free resolutions of stable maximal Cohen-Macaulay modules over a

local hypersurface ring. In the past decade, matrix factorizations have taken on a greater

significance in the physics of B-branes on a Landau-Ginzburg model. More specifically, for

a Landau-Ginzberg model whose target space is a smooth affine variety X over C with su-

perpotential W : X → C, Kapustin and Li [KL03] argued that the category of B-branes

with critical value λ ∈ C should be given by matrix factorizations of W − λ up to a suit-

able notion of homotopy. It was subsequently shown by Orlov [Orl04] that the homotopy

category of matrix factorizations of W − λ is equivalent to the triangulated category of sin-

gularities Dsg(Xλ) on the fiber Xλ of W . This latter category is just the Verdier quotient of

the bounded derived category of coherent sheaves on Xλ by the thick subcategory of perfect

complexes. Singularity categories were introduced in the case of rings by Buchweitz, who

first realized the connection with matrix factorizations in [Buc86], and they were later re-

discovered by Orlov in the algebro-geometric setting. From a physical point of view, Orlov’s

result is interesting because it suggests using singularity categories as a potential definition

for B-branes on nonaffine varieties as well.

In [EP16], Eisenbud and Peeva identify a particularly nice class of modules over local

complete intersection rings and construct the minimal free resolutions of such modules by

defining matrix factorizations of arbitrary codimension. Ideally, one might be able to define

a notion of homotopy for these higher codimension matrix factorizations and extend Orlov’s
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result almost verbatim. This seems out of reach for the time being, but as a first step

towards this goal in codimension two, we construct a functor from the category of matrix

factorizations to the singularity category of the corresponding complete intersection.

Notation 1.1. Let Q be a regular ring of finite Krull dimension, f1, f2 be a Q-regular

sequence, and R = Q/(f1, f2). We also consider graded matrix factorizations over the

polynomial ring S = Q[T1, T2] of the element W = f1T1 + f2T2, and we set Y = ProjS/(W ).

Burke and Walker [BW15, 2.10, 6.8] have already shown that Dsg(Y ) ' Dsg(R) is equiv-

alent to a quotient of the homotopy category of graded matrix factorizations of W over S.

Thus, it will be sufficient for our purposes to construct a functor from codimension two

matrix factorizations of f1, f2 over Q to graded matrix factorizations of W over S. The

strategy is simple: Burke and Walker show how to obtain a graded matrix factorization of

W from a finite Q-free resolution of an R-module together with a chosen system of higher

homotopies. Additionally, Eisenbud and Peeva show how to construct a finite Q-free resolu-

tion of a matrix factorization module coming from a codimension two matrix factorization.

This note describes how every codimension two matrix factorization encodes a canonical

choice of higher homotopies on its induced Q-free resolution and how morphisms of matrix

factorizations induce chain maps on Q-free resolutions and morphisms on the corresponding

graded matrix factorizations.

2 Matrix Factorizations

In this section, we recall the definitions of the various kinds of matrix factorizations that

will be relevant below. Because higher codimension matrix factorizations are defined recur-

sively, we must first understand matrix factorizations in codimension one.

Definition 2.1. A (codimension one) matrix factorization of f1 consists of a pair of finitely

generated free Q-modules B01 and B11 together with homomorphisms

B01 B11 B01
h1 b1

such that b1h1 = f1 · IdB01 and h1b1 = f1 · IdB11 . We frequently omit the modules from the

notation and write (b1, h1) for the matrix factorization. A morphism of matrix factorizations

is a pair of homomorphisms α1 : B01 → B′01 and β1 : B11 → B′11 such that the following

diagram commutes.

B01 B11 B01

B′01 B′11 B′01

h1

α1

b1

β1 α1

h′1 b′1
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Because f1 is regular on Q, the multiplication by f1 map on Bm1 is injective for m = 0, 1.

A simple consequence of this fact is that b1 and h1 are both injective maps. In addition,

to check that (α1, β1) is a morphism, it suffices to check that only the right square above

commutes. We will use these observations freely in the proofs below and refer the reader to

[Eis80], [LW12], or [Yos90] for more on codimension one matrix factorizations.

Definition 2.2. A codimension two matrix factorization of f1, f2 consists of four finitely

generated free Q-modules B01, B02, B11 and B12 together with homomorphisms as shown

below

B01 B11 B01

B01 B11 B01 ⊕ ⊕ ⊕

B02 B12 B02

ρ1

θ1

b1

h1 b1

θ2

ρ2

b2

ψ (2.1)

such that (b1, h1) is a codimension one matrix factorization of f1 and if we set

d =

(
b1 ψ

0 b2

)
: B11 ⊕B12 −→ B01 ⊕B02 h2 =

(
ρ1 ρ2

θ1 θ2

)
: B01 ⊕B02 → B11 ⊕B12

then we have the following equalities modulo f1

dh2 ≡ f2 · Id h2d ≡
(
∗ ∗
0 f2

)
Notation 2.3. For m = 0, 1, we set Am = Bm1⊕Bm2. We can think of Am as being filtered

by the submodules Am(p) =
⊕

q≤pBmq for p = 1, 2, and we define

h =

(
h1 ρ1 ρ2

0 θ1 θ2

)
: A0(1)⊕ A0(2)→ A1

As in the codimension one case, we frequently omit the modules from the notation and write

(d, h) for the matrix factorization. The R-module M = Coker(d⊗ IdR) is called the matrix

factorization module of (d, h) and will sometimes be denoted by Coker(d, h).

The following simple lemma will be well-known to experts, but we state it explicitly

because it plays such a key role in all our constructions.

Lemma 2.4. Suppose that F and G are free Q-modules and that ϕ : F → G is a homomor-

phism such that ϕ⊗ IdQ/(f1) = 0. Then there exists a unique homomorphism t : F → G such

that ϕ = f1t.

As a consequence of the preceding lemma, we see that there exist homomorphisms such
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that

dh2 =

(
f2 + f1λ1 f1λ2

f1ε1 f2 + f1ε2

)
h2d =

(
∗ ∗

f1ω1 f2 + f1ω2

)
By replacing h2 with the matrix

h̃2 =

(
ρ1 − h1λ1 ρ2 − h2λ2

θ1 θ2

)
it is easily checked that we get a matrix factorization (d, h̃) with the same matrix factorization

module such that

dh̃2 =

(
f2 0

f1ε1 f2 + f1ε2

)
h̃2d =

(
∗ ∗

f1ω1 f2 + f1ω2

)
(2.2)

We will henceforth assume without loss of generality that (2.2) holds for every matrix fac-

torization; this will simplify certain expressions later on.

Definition 2.5. A morphism of codimension two matrix factorizations is a triple of homo-

morphisms

α =

(
α1 γ

0 α2

)
: B01 ⊕B02 → B′01 ⊕B′02 β =

(
β1 δ

0 β2

)
: B11 ⊕B12 → B′11 ⊕B′12

α̃ =

α1 χ1 χ2

0 α1 γ

0 0 α2

 : A0(1)⊕ A0(2)→ A′0(1)⊕ A′0(2)

such that (α1, β1) is a morphism of codimension one matrix factorizations and the following

diagram commutes modulo f1

A0(1)⊕ A0(2) A1 A0

A′0(1)⊕ A′0(2) A′1 A′0

α̃

h

β

d

α

h′ d′

The category of codimension two matrix factorizations and morphisms of f1, f2 over Q will

be denoted by MF(Q, f1, f2).

We will abuse notation slightly and denote a morphism of matrix factorizations simply

by the pair (α, β). Using Lemma 2.4 once again, we see that there exist homomorphisms

such that

αd− d′β =

(
0 f1u

0 f1v

)
βh− h′α̃ =

(
0 f1s1 f1s2

0 f1r1 f1r2

)
By replacing the maps δ, χ1 and χ2 with δ + h′1u, χ1 + uθ1 + b′1s1, and χ2 + uθ2 + b′1s2
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respectively, we may assume without loss of generality that we have equalities of the form

αd− d′β =

(
0 0

0 f1v

)
βh− h′α̃ =

(
0 0 0

0 f1r1 f1r2

)
(2.3)

The following is a simple but technical lemma relating the matrix factorization maps

defined above that we will need later.

Lemma 2.6. Let (α, β) : (d, h) → (d′, h′) and (α′, β′) : (d′, h′) → (d′′, h′′) be morphisms of

matrix factorizations. Set (α′′, β′′) = (α′α, β′β). Then we have the following equalities:

θ1 = ω1h1 (2.4)

χ1 = γε1 − ψ′r1 χ2 = γε2 − ψ′r2 (2.5)

γ′v = 0 v′′ = v′β2 + α′2v (2.6)

r′′1 = β′2r1 + r′1α1 r′′2 = β′2r2 + r′1γ + r′2α2 (2.7)

Proof. The basic idea of the proof is to multiply by f1, do some formal manipulations using

known commutativity relations (2.2) and (2.3), and then cancel f1 to obtain the desired

relations. To make the computation less opaque to the reader, we underline the terms being

replaced in each step. For example, we have

f1χ1 = b′1h
′
1χ1 = b′1β1ρ1 + b′1δθ1 − b′1ρ′1α1 = α1b1ρ1 + b′1δθ1 + ψ′θ1α1 − f2α1

= ψ′θ′1α1 + (−α1ψ + b′1δ)θ1 = ψ′(θ′1α1 − β2θ1) + γb2θ1

= −f1ψ
′r1 + γb2θ1 = f1(γε1 − ψ′r1)

Canceling f1, we see that equality for χ1 holds. The other equalities are easily checked in a

similar fashion.

Remark 2.7. Because r1 and r2 are the unique maps satisfying f1r1 = β2θ1 − θ′1α1 and

f2r2 = β2θ2 − θ′1γ − θ′2α2, the preceding lemma shows that the maps χ1 and χ2 in the

definition of a morphism of matrix factorizations are actually uniquely determined by the

maps (α, β), justifying our earlier abuse of notation.

Recall that we set S = Q[T1, T2] and W = f1T1 + f2T2. We view S as a graded ring with

the standard Z-grading by total degree.

Definition 2.8. A graded matrix factorization E of W is a pair of finitely generated free

graded S-modules E0 and E1 together with graded homomorphisms

E1 E0 E1(1)
e1 e0

such that e0e1 = e1(1)e0 = W . A morphism of graded matrix factorizations α : E → E ′ is a

pair of graded homomorphisms ϕ0 and ϕ1 such that the following diagram commutes
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E1 E0 E1(1)

E ′1 E ′0 E ′1(1)

e1

ϕ1

e0

ϕ0 ϕ1(1)

e′1 e′0

The category of all graded matrix factorizations of W over S will be denoted by MFgr(S,W ).

3 Construction of the Functor

As noted in the introduction, systems of higher homotopies also play an important role in

constructing the desired functor on codimension two matrix factorizations. The description

of higher homotopies involves multi-indices J = (J1, J2) ∈ Z2. We write ei for the i-th

standard basis vector over Z, and set |J | = J1 + J2. In this section, a graded Q-module F

will also refer to an externally graded collection {Fn}n∈Z of Q-modules, and a graded map

f : F → G between graded modules will be a family of homomorphisms fn : Fn → Gn for

every n ∈ Z. We denote by F [i] the graded module such that F [i]n = Fn+i. In particular,

if F and G are chain complexes, then a nullhomotopy for a chain map f : F → G is an

example of a graded map F → G[1].

Definition 3.1. Let F be a complex of Q-modules. A system of higher homotopies for f1, f2

on F is a family of homotopies σJ : F → F [2|J | − 1] for each J ∈ N2 \ {0} such that:

(i) σei is a nullhomotopy for the multiplication by fi map on F for each i.

(ii) σK is a nullhomotopy for the chain map −
∑

I+J=K σIσJ for |K| ≥ 2.

Let (d, h) be a matrix factorization of codimension two. Eisenbud and Peeva prove that

the following complex is a Q-free resolution of its MF module, [EP16, 3.1.3-3.1.6].

L(d, h) : B12 B11 ⊕B12 ⊕B02 B01 ⊕B02

h1ψ−f1
b2

 (
b1 ψ 0

0 b2 f1

)
(3.1)

Construction 3.2. Suppose we are given a morphism (α, β) : (d, h) → (d′, h′). Then we

can construct a chain map L(α, β) : L(d, h) → L(d′, h′) with L(α, β)2 = β2, L(α, β)0 = α

and

L(α, β)1 =

β1 δ h′1γ

0 β2 0

0 v α2


In addition, there is canonical choice of higher homotopies σ(d, h) on L(d, h) coming from
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the data of the matrix factorization as given below.

σ(d, h)e1 :
(
0 − IdB12 0

) h1 0

0 0

0 IdB02



σ(d, h)e2 :
(
ω1 ω2 θ2

)  ρ1 ρ2

θ1 θ2

−ε1 −ε2


and σ(d, h)J = 0 for all J ∈ N2 \ {0} with |J | ≥ 2. Following [BW15, §6.3], we can then

construct a graded matrix factorization E(d, h) of W as shown below

(B11 ⊕B12 ⊕B02)⊗ S
B12 ⊗ S(1)

⊕
(B01 ⊕B02)⊗ S

(B11 ⊕B12 ⊕B02)⊗ S(1)
e1(d, h) e0(d, h)

where we have

e1(d, h) =

T2ω1 −T1 + T2ω2 T2θ2

b1 ψ 0

0 b2 f1

 e0(d, h) =

h1ψ T1h1 + T2ρ1 T2ρ2

−f1 T2θ1 T2θ2

b2 −T2ε1 T1 − T2ε2


Here, we abuse notation slightly and do not distinguish between the matrices over Q and the

matrices tensored over S. Every morphism (α, β) of codimension two matrix factorizations

induces a morphism E(α, β) of graded matrix factorizations via E(α, β)1 = L(α, β)1 and

E(α, β)0 =

β2 −T2r1 −T2r2

0 α1 γ

0 0 α2


Theorem 3.3. With the notation as above:

(a) There is a faithful, additive functor L : MF(Q, f1, f2) −→ Perf(Q) to the category of

perfect complexes of Q-modules given by the assignments (d, h) 7→ L(d, h) and (α, β) 7→
L(α, β).

(b) The maps σ(d, h) form a system of higher homotopies on L(d, h) for every matrix

factorization (d, h).

(c) There is a faithful, additive functor E : MF(Q, f1, f2) −→ MFgr(S,W ) given by the

assignments (d, h) 7→ E(d, h) and (α, β) 7→ E(α, β).

Proof. (a) Let (α, β) : (d, h) → (d′, h′) be a morphism of codimension two matrix factor-

izations. First, we check that L(α, β) is a chain map as claimed above. We denote by
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∂i : L(d, h)i+1 → L(d, h)i the i-th differential of the complex L(d, h), and similarly, we

denote the differentials of L(d′, h′) by ∂′i. Simple calculations using the relations (2.3) show

L(α, β)1∂1 =

β1h1ψ − f1δ + h′1γb2

−f1β2

−f1v + α2b2

 =

h′1(α1ψ + γb2 − b′1δ)
−f1β2

b′2β2

 =

h′1ψ′β2

−f1β2

b′2β2

 = ∂′1L(α, β)2

L(α, β)0∂0 =

(
α1b1 α1ψ + γb2 f1γ

0 α2b2 f1α2

)

∂′0L(α, β)1 =

(
b′1β1 b′1δ + ψ′β2 b′1h

′
1γ

0 b′2β2 + f1v f1α2

)
Comparing the entries of the latter two matrices using the relations, it is clear that they

agree. Hence, L(α, β) is a chain map as claimed.

If (α, β) = (Id, Id) is the identity morphism, it is easily checked that L(α, β) is the identity

map on L(d, h), since the maps γ, δ, and v must all be zero in this case. Suppose (α′, β′) is

another morphism, and set (α′′, β′′) = (α′α, β′β). Because we have

α′′ =

(
α′1α1 α′1γ + γ′α2

0 α′2α2

)
β′′ =

(
β′1β1 β′1δ + δ′β2

0 β′2β2

)
(3.2)

it is immediate that L(α′′, β′′)i = L(α′, β′)iL(α, β)i for i = 0, 2. In addition, we calculate

L(α′, β′)1L(α, β)1 =

β′1β1 β′1δ + δ′β2 + h′′1γ
′v β′1h

′
1γ + h′′1γ

′α2

0 β′2β2 0

0 v′β2 + α′2v α′2α2


Since β′1h

′
1γ+h′′1γ

′α2 = h′′1(α′1γ+γ′α2), we need only show that h′′1γ
′v = 0 and v′′ = v′β2+α′2v

to prove that L(α′′, β′′)1 = L(α′, β′)1L(α, β)1. This is the content of Lemma 2.6. Thus, the

assignment (α, β) 7→ L(α, β) is functorial. It is also easily seen that the functor L is additive.

If L(α, β) = 0, then the maps α and β must be zero, and Lemma 2.6 implies that χ1 = 0 = χ2.

Hence, L is also faithful.

(b) Since the resolution L(d, h) has length two, it is clear that we must have σ(d, h)J = 0

for |J | ≥ 2, so we need only check that σ(d, h)ei is a nullhomotopy for fi for i = 1, 2. Checking

that σ(d, h)e1 is a nullhomotopy for f1 is a straightforward calculation which we leave to the

reader. To see that σ(d, h)e2 is a nullhomotopy for f2, we note that ∂0[σ(d, h)e2 ]0 = f2 IdL(d,h)0

follows immediately from (2.2) and (2.3). We also have

[σ(d, h)e2 ]1∂1 =
(
ω1 ω2 θ2

)h1ψ

−f1

b2

 = ω1h1ψ−f1ω2 + θ2b2 = ω1h1ψ+f2 IdB01 −θ1ψ = f2 IdL(d,h)2
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where the last equality follows from Lemma 2.6 and we have marked the terms being replaced

at each step as in the proof of the lemma. Finally, using (2.2) and (2.3), we compute that

∂1[σ(d, h)e2 ]1 + [σ(d, h)e2 ]0∂0 =

h1ψω1 + ρ1b1 h1ψω2 + ρ1ψ + ρ2b2 h1ψθ2 + f1ρ2

0 f2 0

b2ω1 − ε1b1 b2ω2 − ε1ψ − ε2b2 f2


We must show that the above map is equal to f2 IdL(d,h)1 . We note that h1ψθ2 + f1ρ2 =

h1(ψθ2 + b1ρ2) = 0 by (2.2), and

f1(b2ω1 − ε1b1) = (b2θ1 − f1ε1)b1 = 0

so that canceling f1 yields b2ω1− ε1b1 = 0. That b2ω2− ε1ψ− ε2b2 = 0 is proved in a similar

manner. Furthermore, we see that

b1(h1ψω1 + ρ1b1) = f1ψω1 + b1ρ1b1 = (ψθ1 + b1ρ1)b1 = f2b1

Since b1 is also an injective map, we can cancel b1 from the preceding equality to obtain

h1ψω1 + ρ1b1 = f2 IdB11 , and that h1ψω2 + ρ1ψ + ρ1b2 = 0 is similarly proved. Hence, we

have ∂1[σ(d, h)e2 ]1 + [σ(d, h)e2 ]0∂0 = f2 IdL(d,h)1 so that σ(d, h)e2 is a nullhomotopy for f2 as

claimed.

(c) It is immediate from part (b) and [BW15, §6.3] that E(d, h) is a graded matrix

factorization of W . Given a morphism (α, β) : (d, h) → (d′, h′), we check that E(α, β) is

a morphism of graded matrix factorizations. The homomorphisms E(α, β)i for i = 0, 1 are

graded by construction. We set ei = ei(d, h) and e′i = ei(d
′, h′) for i = 0, 1. By our earlier

remarks about morphisms of codimension one matrix factorizations, it is enough to prove

that E(α, β)0e1 = e′1E(α, β)1. A simple calculation shows

E(α, β)0e1 =

T2(β2ω1 − r1b1) −T1β2 + T2(β2ω2 − r1ψ − r2b2) T2(β2θ2 − f1r2)

α1b1 α1ψ + γb2 f1γ

0 α2b2 f1α2



e′1E(α, β)1 =

T2ω
′
1β1 −T1β2 + T2(ω′1δ + ω′2β2 + θ′2v) T2(ω′1h

′
1γ + θ′2α2)

b′1β1 b′1δ + ψ′β2 b′1h
′
1γ

0 b′2β2 + f1v f1α2


Comparing entries, it is immediately clear from the relations (2.3) that all of the entries in

the second and third rows agree. That the 1,3-entries agree also follows from this and the

equality θ′1 = ω′1h
′
1 of Lemma 2.6, so we need only show that the following equalities hold:

β2ω1 − r1b1 = ω′1β1 (3.3)

β2ω2 − r1ψ − r2b2 = ω′1δ + ω′2β2 + θ′2v (3.4)
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Multiplying the left side of (3.3) by f1, we obtain

f1(β2ω1 − r1b1) = β2θ1b1 − β2θ1b1 + θ′1α1b1 = θ′1b
′
1β1 = f1ω

′
1β1

so that canceling the f1 yields the desired equality. The equality (3.4) is proved similarly so

that E(α, β) is a morphism of graded matrix factorizations as claimed.

If (α, β) = (Id, Id) is the identity morphism, it is easily checked that E(α, β) is the

identity morphism on E(d, h), since the maps γ, δ, v and ri must all be zero in this case.

Suppose (α′, β′) is another morphism, and set (α′′, β′′) = (α′α, β′β). We already know that

E(α′′, β′′)1 = E(α′, β′)1E(α, β)1 from part (a). On the other hand, we have

E(α′, β′)0E(α, β)0 =

β′2β2 −T2(β′2r1 + r′1α1) −T2(β′2r2 + r′1γ + r′2α2)

0 α′1α1 α′1γ + γ′α2

0 0 α′2α2


And so, using (3.2), it is enough to show that r′′1 = β′2r1 + r′1α1 and r′′2 = β′2r2 + r′1γ + r′2α2

to prove that E(α′′, β′′)0 = E(α′, β′)0E(α, β)0. This was already established in Lemma 2.6.

Thus, the assignment (α, β) 7→ E(α, β) is functorial. It is also easily seen that the functor

E is additive. If E(α, β) = 0, then recalling the fact that we suppressed all of the tensor

with IdS signs in our formulation of E(α, β) but that S is faithfully flat over Q, it follows

immediately that α and β must be zero so that Lemma 2.6 implies that χ1 = 0 = χ2. Hence,

E is also faithful.

The above recipe can be used to produce graded matrix factorizations even in higher

codimension since the the resolution L(d, h) of the matrix factorization module always admits

a system of higher homotopies by [EP16, 3.4.2]. The main point in codimension two is that

there is a canonical choice for each matrix factorization which makes everything functorial.

To condense what may have admittedly seemed a bit like alphabet soup up to this point,

we give a concrete example.

Example 3.4. Consider the regular sequence f1 = xz, f2 = y2 in Q = Q[x, y, z]. We can
construct nontrivial matrix factorizations of f1, f2 over Q by using the package Complete

IntersectionResolutions for Macaulay2.

i1 : loadPackage "CompleteIntersectionResolutions";

i2 : Q = QQ[x,y,z]; f = matrix {{x*z, y^2}}; R = Q/ideal(f);

M = highSyzygy coker matrix {{x,y}};

1 2

o3 : Matrix Q <--- Q

i6 : mf = matrixFactorization(f, M, Check => true)

10



o6 = {{2} | 0 z y 0 |, {3} | y -z 0 0 0 |}

{2} | -x y 0 0 | {3} | x 0 0 y 0 |

{2} | 0 0 -x y | {3} | 0 0 y -z 0 |

{3} | 0 0 x 0 y |

o6 : List

The above matrices are the maps d and h of the matrix factorization respectively. Break-

ing these maps into their respective blocks, we have the following codimension two matrix

factorization.

Q2 Q2 Q2

(
y −z
x 0

) (
0 z

−x y

) Q2 Q2 Q2

Q Q2 Q

(
0 0

0 y

)

θ1

(
0 z

−x y

)

(
0

y

) (
−x y

)
ψ

⊕ ⊕ ⊕

where ψ =

(
y 0

0 0

)
and θ1 = h1 =

(
y −z
x 0

)
. In this case, the resolution L(d, h) is

i7 : L = (makeFiniteResolutionCodim2(mf, f))#"resolution"; L.dd

3 5

o8 = 0 : Q <------------------------ Q : 1

{2} | 0 z y 0 0 |

{2} | -x y 0 0 0 |

{2} | 0 0 -x y xz |

5 2

1 : Q <------------------- Q : 2

{3} | y2 0 |

{3} | xy 0 |

{3} | -xz 0 |

{3} | 0 -xz |

{4} | -x y |

o8 : ChainComplexMap

In order to streamline the remainder of the example, we use supplementary functions not
included in the above package, which are available at https://github.com/mnmastro/

Codim-2-Matrix-Factorizations. To construct the system of higher homotopies, we need
the maps εi and ωi for i = 1, 2.

i9 : epsilonMaps mf
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o9 = {{2} | 0 1 |, 0}

o9 : List

i10 : omegaMaps mf

o10 = {{3} | 1 0 |, 0}

{3} | 0 1 |

o10 : List

We can then construct the system of higher homotopies and check that they are actually
nullhomotopies for multiplication by fi for i = 1, 2.

i11 : sigma = sigmaMaps mf

5 3 5 3

o11 = {0 : Q <------------------ Q : 0 , 0 : Q <------------------ Q : 0 }

{3} | y -z 0 | {3} | 0 0 0 |

{3} | x 0 0 | {3} | 0 y 0 |

{3} | 0 0 0 | {3} | y -z 0 |

{3} | 0 0 0 | {3} | x 0 y |

{4} | 0 0 1 | {4} | 0 -1 0 |

2 5 2 5

1 : Q <----------------------- Q : 1 1 : Q <--------------------- Q : 1

{5} | 0 0 -1 0 0 | {5} | 1 0 0 0 0 |

{5} | 0 0 0 -1 0 | {5} | 0 1 0 0 y |

o11 : List

i12 : dL = map(L[-1],L, i -> L.dd_i);

i13 : {dL[1]*(sigma#0) + (sigma#0)[-1]*dL == f_0_0*id_L,

dL[1]*(sigma#1) + (sigma#1)[-1]*dL == f_1_0*id_L}

o13 = {true, true}

For this particular example, the above system of higher homotopies agrees with the one
constructed by the makeHomotopies function in the complete intersections package. It is
then easy to build the corresponding graded matrix factorization of W = xzT1 + y2T2 over
S = Q[T1, T2].

i14 : E = toGradedMF mf

o14 = {{0, 3} | y2 0 T_1y -T_1z 0 |, {0, 5} | T_2 0 -T_1 0 0 |}

{0, 3} | xy 0 T_1x T_2y 0 | {0, 5} | 0 T_2 0 -T_1 T_2y |

{0, 3} | -xz 0 T_2y -T_2z 0 | {0, 2} | 0 z y 0 0 |

{0, 3} | 0 -xz T_2x 0 T_2y | {0, 2} | -x y 0 0 0 |

{0, 4} | -x y 0 -T_2 T_1 | {0, 2} | 0 0 -x y xz |

12



o14 : List

i15 : S = ring E#0; W = (f*(transpose vars S))_0_0;

i17 : {E#0*E#1 == W*id_(source E#1), E#1*E#0 == W*id_(source E#0)}

o17 = {true, true}

o17 : List

Having constructed the desired functor E : MF(Q, f1, f2)→ MFgr(S,W ), we can compose

it with the functor Ψ : MFgr(S,W ) → Dsg(R) of Burke and Walker to get a functor from

codimension two matrix factorizations to the singularity category.1 On the other hand, there

is a natural functor Coker : MF(Q, f1, f2)→ MCM(R) taking a matrix factorization to its MF

module; if (α, β) : (d, h)→ (d′, h′) is a morphism of matrix factorizations, we get an induced

map Coker(α, β) : Coker(d, h) → Coker(d′, h′) which is clearly functorial since d ⊗ IdR is a

presentation for the MF module of (d, h). Alternatively, Coker is just the composition of the

zeroth homology functor with the functor L above. Because R = Q/(f1, f2) is Gorenstein, a

result of Buchweitz [Buc86, 4.4.1] shows that Dsg(R) is equivalent as a triangulated category

to the stable category MCM(R) of maximal Cohen-Macaulay R-modules via the natural

functor sending a maximal Cohen-Macaulay R-module to itself viewed as a stalk complex in

Dsg(R). Hence, we have a diagram

MF(Q, f1, f2) MFgr(S,W )

MCM(R) Dsg(R)

E

Coker Ψ

'

which commutes up to isomorphisms in Dsg(R) by [BW15, 6.7]. Furthermore, the functor

on the right becomes an equivalence after passing to a suitable quotient of the homotopy

category of graded matrix factorizations, and so, a natural question is whether there is a

suitable notion of homotopy for codimension two matrix factorizations so that the functor

on the left also becomes an equivalence.

4 Potential Future Work

At this point, there is still much to be done. Here, we work only with codimension two

matrix factorizations; the next obvious step would be to extend the constructions to arbi-

trary codimension. In codimension two, the free resolution L(d, h) is just short enough to

1We are sweeping a few details under the rug. Technically, what we have called Ψ here involves first
sheafifying the graded matrix factorization E to obtain a matrix factorization Ẽ of W between locally free
sheaves on P1

Q and then applying the functor Ψ of Burke and Walker; see [BW15, 2.11].
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avoid having nontrivial higher homotopies of high degree. However, in moving to higher

codimension, the free resolution will be longer, and consequently, more nontrivial higher ho-

motopies will be unavoidable. Determining whether these maps can be constructed from the

data of the matrix factorization also becomes more complicated as the matrix factorization

itself becomes more layered.

It is also possible to suggest definitions of nullhomotopies between codimension two ma-

trix factorizations so that the functor E preserves and reflects nullhomotopic morphisms. A

much larger problem is whether any such definition yields a notion of a homotopy category

which is triangulated and such that E induces an exact functor of homotopy categories, but

this may be overly optimistic.
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